Net Zero by 2050 (IEA, 2021).
Doerr, J. & Panchadsaram, R. Speed & Scale: An Action Plan for Solving Our Climate Crisis Now (Portfolio, 2021).
Sarah L. et al. Industrial Policy, Trade, And Clean Energy Supply Chains (CSIS & BloombergNEF, 2021); https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210224_Ladislaw_Industrial_Policy.pdf.
Goldthau, A. & Hughes, L. Protect global supply chains for low-carbon technologies. Nature 585, 28–30 (2020).
Google Scholar
Renewable Power Generation Costs in 2021 (IRENA, 2021); https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021.
Helveston, J. & Nahm, J. China’s key role in scaling low-carbon energy technologies. Science 366, 794–796 (2019).
Google Scholar
World Energy Outlook 2020 (IEA, 2020).
Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A. & Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 6, 742–754 (2021).
Google Scholar
Jäger-Waldau, A. Snapshot of photovoltaics—February 2022. EPJ Photovolt. 13, 9 (2022).
Google Scholar
Special Report on Solar PV Global Supply Chains (IEA, 2022); https://www.iea.org/reports/solar-pv-global-supply-chains.
Nemet, G. F. How Solar Energy Became Cheap: A Model for Low-Carbon Innovation (Routledge, 2019).
Atkinson, R. D. Why China needs to end its economic mercantilism. HuffPost https://www.huffpost.com/entry/why-china-needs-to-end-it_b_84028 (2008).
Fact Sheet: President Biden Takes Bold Executive Action to Spur Domestic Clean Energy Manufacturing (The White House, 2022).
Green, M. A. How did solar cells get so cheap? Joule 3, 631–633 (2019).
Google Scholar
Tillman, B. Red scare or red herring: how the “China Initiative” strategy for non-traditional collectors is stifling innovation in the United States. Seattle J. Technol. Environ. Innov. Law 11, 6 (2020).
Fu, R., Feldman, D. & Margolis, R. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018 (NREL, 2018); https://www.nrel.gov/docs/fy19osti/72399.pdf.
Nemet, G. F., Lu, J., Rai, V. & Rao, R. Knowledge spillovers between PV installers can reduce the cost of installing solar PV. Energy Policy 144, 111600 (2020).
Google Scholar
Renewable Energy Statistics 2021 (IRENA, 2021); https://www.irena.org/publications/2021/Aug/Renewable-energy-statistics-2021.
2021 Annual Technology Baseline (NREL, 2021); https://atb.nrel.gov/electricity/2021/data
Surana, K., Doblinger, C., Anadon, L. D. & Hultman, N. Effects of technology complexity on the emergence and evolution of wind industry manufacturing locations along global value chains. Nat. Energy 5, 811–821 (2020).
Google Scholar
Feldman, D. & Margolis, R. H2 2020 Solar Industry Update (NREL, 2021); https://www.nrel.gov/docs/fy21osti/79758.pdf.
Chung, D., Horowitz, K. & Kurup, P. On the Path to SunShot: Emerging Opportunities and Challenges in U.S. Solar Manufacturing (NREL, 2016); https://www.nrel.gov/docs/fy16osti/65788.pdf.
Hart, D. The Impact of China’s Production Surge on Innovation in the Global Solar Photovoltaics Industry (ITIF, 2020); https://itif.org/publications/2020/10/05/impact-chinas-production-surge-innovation-global-solar-photovoltaics.
Sivaram, V., Dabiri, J. O. & Hart, D. M. The need for continued innovation in solar, wind, and energy storage. Joule 2, 1639–1642 (2018).
Google Scholar
Fuchs, E. & Kirchain, R. Design for location? The impact of manufacturing offshore on technology competitiveness in the optoelectronics industry. Manage. Sci. 56, 2323–2349 (2010).
Google Scholar
Abernathy, W. J. & Utterback, J. M., others. Patterns of industrial innovation. Technol. Rev. 80, 40–47 (1978).
Gort, M. & Klepper, S. Time paths in the diffusion of product innovations. Econ. J. 92, 630–653 (1982).
Google Scholar
Utterback, J. M. & Suárez, F. F. Innovation, competition, and industry structure. Res. Policy 22, 1–21 (1993).
Google Scholar
Utterback, J. M. Mastering the Dynamics of Innovation: How Companies Can Seize Opportunities in the Face of Technological Change (Harvard Business School, 1994).
Agarwal, R. & Gort, M. The evolution of markets and entry, exit and survival of firms. Rev. Econ. Stat. 78, 489–498 (1996).
Google Scholar
Carvalho, M., Dechezleprêtre, A. & Glachant, M. Understanding the Dynamics of Global Value Chains for Solar Photovoltaic Technologies. Economic Research Working Paper No. 40 (WIPO, 2017).
Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering Broad-Based Growth (The White House, 2021); https://www.whitehouse.gov/wp-content/uploads/2021/06/100-day-supply-chain-review-report.pdf.
Myslikova, Z. & Gallagher, K. S. Mission Innovation is mission critical. Nat. Energy 5, 732–734 (2020).
Google Scholar
Nahm, J. & Steinfeld, E. S. Scale-up nation: China’s specialization in innovative manufacturing. World Dev. 54, 288–300 (2014).
Google Scholar
Solar Supply Chain Traceability Protocol 1.0 (SIEA, 2021); https://www.seia.org/research-resources/solar-supply-chain-traceability-protocol.
McDonald, A. & Schrattenholzer, L. Learning rates for energy technologies. Energy Policy 29, 255–261 (2001).
Google Scholar
Nemet, G. F. Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy 34, 3218–3232 (2006).
Google Scholar
Qiu, Y. & Anadon, L. D. The price of wind power in China during its expansion: technology adoption, learning-by-doing, economies of scale, and manufacturing localization. Energy Econ. 34, 772–785 (2012).
Google Scholar
Zheng, C. & Kammen, D. M. An innovation-focused roadmap for a sustainable global photovoltaic industry. Energy Policy 67, 159–169 (2014).
Google Scholar
Rubin, E. S., Azevedo, I. M. L., Jaramillo, P. & Yeh, S. A review of learning rates for electricity supply technologies. Energy Policy 86, 198–218 (2015).
Google Scholar
Yelle, L. E. The learning curve: historical review and comprehensive survey. Decis. Sci. 10, 302–328 (1979).
Google Scholar
Yu, C. F., van Sark, W. G. J. H. M. & Alsema, E. A. Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects. Renew. Sustain. Energy Rev. 15, 324–337 (2011).
Google Scholar
Zhang, C., Xie, L., Qiu, Y., (Lucy) & Wang, S. Learning-by-manufacturing and learning-by-operating mechanisms drive energy conservation and emission reduction in China’s coal power industry. Resour. Conserv. Recycl. 186, 106532 (2022).
Google Scholar
Lewis, J. I. & Nemet, G. F. Assessing learning in low carbon technologies: toward a more comprehensive approach. WIREs Clim. Change 12, e730 (2021).
Google Scholar
Meng, J., Way, R., Verdolini, E. & Anadon, L. D. Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition. Proc. Natl Acad. Sci. USA 118, e1917165118 (2021).
Google Scholar
Kavlak, G., McNerney, J. & Trancik, J. E. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 123, 700–710 (2018).
Google Scholar
Vartiainen, E., Masson, G., Breyer, C., Moser, D. & Román Medina, E. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Prog. Photovolt. Res. Appl. 28, 439–453 (2020).
Google Scholar
Solar Industry Research Data (SEIA, 2021); https://www.seia.org/solar-industry-research-data
Barbose, G. L. & Darghouth, N. R. Tracking the Sun: Pricing and Design Trends for Distributed Photovoltaic Systems in the United States—2019 Edition (LBNL, 2019); https://emp.lbl.gov/publications/tracking-sun-pricing-and-design.
Wang, S. The Status and Perspectives of China’s PV Industry. Clean Energy Summit 2019. (2019).
Wang, B. PV Industry in 2020, and Perspectives for 2021. China Photovoltaic Industry Association. (2020).
Wirth, H. Recent Facts about Photovoltaics in Germany (Fraunhofer ISE, 2021); https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/recent-facts-about-photovoltaics-in-germany.pdf.
Recent Comments