Vasyliunas, V. M. Theoretical models of magnetic-field line merging. 1. Rev. Geophys. 13, 303–336 (1975).
Google Scholar
Ji, H. T. et al. Magnetic reconnection in the era of exascale computing and multiscale experiments. Nat. Rev. Phys. 4, 263–282 (2022).
Google Scholar
Lu, Q. M., Fu, H. S., Wang, R. S. & Lu, S. Collisionless magnetic reconnection in the magnetosphere. Chin. Phys. B. 31, 089401 (2022).
Google Scholar
Burch, J. L. et al. Electron-scale measurements of magnetic reconnection in space. Science 352, aaf2939 (2016).
Google Scholar
Wang, R. S. et al. Electron-scale quadrants of the hall magnetic field observed by the Magnetospheric Multiscale spacecraft during asymmetric reconnection. Phys. Rev. Lett. 118, 175101 (2017).
Google Scholar
Torbert, R. B. et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 362, 1391–1395 (2018).
Google Scholar
Wei, F. S., Hu, Q., Feng, X. S. & Fan, Q. L. Magnetic reconnection in interplanetary space. Space Sci. Rev. 107, 107–110 (2003).
Google Scholar
Gosling, J. T., Skoug, R. M., McComas, D. J. & Smith, C. W. Direct evidence for magnetic reconnection in the solar wind near 1 au. J. Geophys. Res. Space Phys. 110, A01107 (2005).
Google Scholar
Phan, T. D. et al. A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439, 175–178 (2006).
Google Scholar
Lavraud, B. et al. Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1,800 RE. Sol. Phys. 256, 379–392 (2009).
Google Scholar
Mistry, R., Eastwood, J. P., Phan, T. D. & Hietala, H. Statistical properties of solar wind reconnection exhausts. J. Geophys. Res. Space Phys. 122, 5895–5909 (2017).
Google Scholar
Phan, T. D. et al. Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astron. Astrophys. 650, A13 (2021).
Google Scholar
Burch, J. L., Moore, T. E., Torbert, R. B. & Giles, B. L. Magnetospheric Multiscale overview and science objectives. Space Sci. Rev. 199, 5–21 (2016).
Google Scholar
Pollock, C. et al. Fast Plasma Investigation for Magnetospheric Multiscale. Space Sci. Rev. 199, 331–406 (2016).
Google Scholar
Russell, C. T. et al. The Magnetospheric Multiscale magnetometers. Space Sci. Rev. 199, 189–256 (2016).
Google Scholar
Ergun, R. E. et al. The axial double probe and fields signal processing for the MMS Mission. Space Sci. Rev. 199, 167–188 (2016).
Google Scholar
Lindqvist, P. A. et al. The spin-plane double probe electric field instrument for MMS. Space Sci. Rev. 199, 137–165 (2016).
Google Scholar
Bandyopadhyay, R. et al. Solar wind turbulence studies using MMS Fast Plasma Investigation data. Astrophys. J. 866, 81 (2018).
Google Scholar
Roberts, O. W. et al. A study of the solar wind ion and electron measurements from the Magnetospheric Multiscale Mission’s Fast Plasma Investigation. J. Geophys. Res. Space Phys. 126, e2021JA029784 (2021).
Google Scholar
Forbes, T. G. The nature of Petschek-type reconnection. Earth Planets Space 53, 423–429 (2001).
Google Scholar
Phan, T. D. et al. Parker Solar Probe in situ observations of magnetic reconnection exhausts during encounter 1. Astrophys. J. Suppl. Ser. 246, 34 (2020).
Google Scholar
Eriksson, S. et al. Walen and slow-mode shock analyses in the near-Earth magnetotail in connection with a substorm onset on 27 August 2001. J. Geophys. Res. Space Phys. 109, A10212 (2004).
Google Scholar
Sonnerup, B. U. O., Hasegawa, H., Denton, R. E. & Nakamura, T. K. M. Reconstruction of the electron diffusion region. J. Geophys. Res. Space Phys. 121, 4279–4290 (2016).
Google Scholar
Shay, M. A., Drake, J. F., Denton, R. E. & Biskamp, D. Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res. Space Phys. 103, 9165–9176 (1998).
Google Scholar
Wang, R. S. et al. An electron-scale current sheet without bursty reconnection signatures observed in the near-Earth tail. Geophys. Res. Lett. 45, 4542–4549 (2018).
Google Scholar
Egedal, J. et al. Cluster observations of bidirectional beams caused by electron trapping during antiparallel reconnection. J. Geophys. Res. Space Phys. 115, A03214 (2010).
Google Scholar
Zenitani, S., Hesse, M., Klimas, A., Black, C. & Kuznetsova, M. The inner structure of collisionless magnetic reconnection: the electron-frame dissipation measure and Hall fields. Phys. Plasmas 18, 122108 (2011).
Google Scholar
Hesse, M., Aunai, N., Sibeck, D. & Birn, J. On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett. 41, 8673–8680 (2014).
Google Scholar
Shay, M. A. et al. Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection. Geophys. Res. Lett. 43, 4145–4154 (2016).
Google Scholar
Wang, R. et al. Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys. 12, 263–267 (2016).
Google Scholar
Slavin, J. A. et al. Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. Space Phys. 108, 1015 (2003).
Google Scholar
Wang, R. S. et al. Electrostatic and electromagnetic fluctuations detected inside magnetic flux ropes during magnetic reconnection. J. Geophys. Res. Space Phys. 121, 9473–9482 (2016).
Google Scholar
Stawarz, J. E. et al. Intense electric fields and electron-scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale Mission. Geophys. Res. Lett. 45, 8783–8792 (2018).
Google Scholar
Moldwin, M. B., Ford, S., Lepping, R., Slavin, J. & Szabo, A. Small-scale magnetic flux ropes in the solar wind. Geophys. Res. Lett. 27, 57–60 (2000).
Google Scholar
Cartwright, M. L. & Moldwin, M. B. Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: evidence for reconnection across the HCS? J. Geophys. Res. Space Phys. 113, A09105 (2008).
Google Scholar
Wu, D. J., Feng, H. Q. & Chao, J. K. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity. Astron. Astrophys. 480, L9–L12 (2008).
Google Scholar
Fermo, R. L., Drake, J. F. & Swisdak, M. Secondary magnetic islands generated by the Kelvin–Helmholtz instability in a reconnecting current sheet. Phys. Rev. Lett. 108, 255005 (2012).
Google Scholar
Huang, C. et al. Development of turbulent magnetic reconnection in a magnetic island. Astrophys. J. 835, 245 (2017).
Google Scholar
Chen, L. J. et al. Observation of energetic electrons within magnetic islands. Nat. Phys. 4, 19–23 (2008).
Google Scholar
Telloni, D., Bruno, R., D’Amicis, R., Pietropaolo, E. & Carbone, V. Wavelet analysis as a tool to localize magnetic and cross-helicity events in the solar wind. Astrophys. J. 751, 19 (2012).
Google Scholar
Zhao, L. L. et al. Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters. Astron. Astrophys. 650, A12 (2021).
Google Scholar
Vörös, Z. et al. Magnetic reconnection within the boundary layer of a magnetic cloud in the solar wind. J. Geophys. Res. Space Phys. 126, e2021JA029415 (2021).
Google Scholar
Li, X. M. et al. Three-dimensional network of filamentary currents and super-thermal electrons during magnetotail magnetic reconnection. Nat. Commun. 13, 3241 (2022).
Google Scholar
Shay, M. A. et al. Electron heating during magnetic reconnection: a simulation scaling study. Phys. Plasmas 21, 122902 (2014).
Google Scholar
Daughton, W. et al. Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7, 539–542 (2011).
Google Scholar
Zank, G. P., le Roux, J. A., Webb, G. M., Dosch, A. & Khabarova, O. Particle acceleration via reconnection processes in the supersonic solar wind. Astrophys. J. 797, 28 (2014).
Google Scholar
Drake, J. F., Swisdak, M., Schoeffler, K. M., Rogers, B. N. & Kobayashi, S. Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett. 33, L13105 (2006).
Google Scholar
Che, H. & Zank, G. P. Electron acceleration from expanding magnetic vortices during reconnection with a guide field. Astrophys. J. 889, 11 (2020).
Google Scholar
Zhao, L. L. et al. An unusual energetic particle flux enhancement associated with solar wind magnetic island dynamics. Astrophys. J. Lett. 864, L34 (2018).
Google Scholar
Zhao, L. L. et al. Particle acceleration at 5 au associated with turbulence and small-scale magnetic flux ropes. Astrophys. J. 872, 4 (2019).
Google Scholar
Sonnerup, B. U. & Cahill, L. J. Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171–183 (1967).
Google Scholar
Sonnerup, B. U. O., Papamastorakis, I., Paschmann, G. & Luhr, H. Magnetopause properties from Ampte/Irm observations of the convection electric field: method development. J. Geophys. Res. Space Phys. 92, 12137–12159 (1987).
Google Scholar
Matthaeus, W. H., Goldstein, M. L. & Smith, C. Evaluation of magnetic helicity in homogeneous turbulence. Phys. Rev. Lett. 48, 1256–1259 (1982).
Google Scholar
Bruno, R. & Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 2 (2013).
Google Scholar
Bruno, R. et al. The low-frequency break observed in the slow solar wind magnetic spectra. Astron. Astrophys. 627, A96 (2019).
Google Scholar
Matthaeus, W. H. et al. Density and magnetic field signatures of interplanetary 1/f noise. Astrophys. J. 657, L121–L124 (2007).
Google Scholar
Tu, C. Y. & Marsch, E. MHD structures, waves and turbulence in the solar-wind: observations and theories. Space Sci. Rev. 73, 1–210 (1995).
Google Scholar
Recent Comments