Parker, E. N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958).
Google Scholar
McComas, D. J. et al. Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. Space Phys. 105, 10419–10434 (2000).
Google Scholar
Stakhiv, M., Landi, E., Lepri, S. T., Oran, R. & Zurbuchen, T. H. On the origin of mid-latitude fast wind: challenging the two-state solar wind paradigm. Astrophys. J. 801, 100 (2015).
Google Scholar
Kepko, L. et al. Implications of L1 observations for slow solar wind formation by solar reconnection. Geophys. Res. Lett. 43, 4089–4097 (2016).
Google Scholar
Abbo, L. et al. Slow solar wind: observations and modeling. Space Sci. Rev. 201, 55–108 (2016).
Google Scholar
DeForest, C. E., Howard, R. A., Velli, M., Viall, N. & Vourlidas, A. The highly structured outer solar corona. Astrophys. J. 862, 18 (2018).
Google Scholar
Bale, S. D. et al. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature 576, 237–242 (2019).
Google Scholar
D’Amicis, R. & Bruno, R. On the origin of highly Alfvénic slow solar wind. Astrophys. J. 805, 84 (2015).
Google Scholar
Antiochos, S. K., Mikić, Z., Titov, V. S., Lionello, R. & Linker, J. A. A model for the sources of the slow solar wind. Astrophys. J. 731, 112 (2011).
Google Scholar
Wang, Y.-M. & Sheeley, N. R.Jr. Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726–732 (1990).
Google Scholar
Wang, Y.-M., Ko, Y.-K. & Grappin, R. Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760–769 (2009).
Google Scholar
Wang, Y.-M. Small coronal holes near active regions as sources of slow solar wind. Astrophys. J. 841, 94 (2017).
Google Scholar
Wang, Y.-M. & Ko, Y.-K. Observations of slow solar wind from equatorial coronal holes. Astrophys. J. 880, 146 (2019).
Google Scholar
D’Amicis, R., Matteini, L. & Bruno, R. On the slow solar wind with high Alfvénicity: from composition and microphysics to spectral properties. Mon. Not. R. Astron. Soc. 483, 4665–4677 (2019).
Google Scholar
Panasenco, O. et al. Exploring solar wind origins and connecting plasma flows from the parker solar probe to 1 au: nonspherical source surface and Alfvénic fluctuations. Astrophys. J. Suppl. Ser. 246, 54 (2020).
Google Scholar
Cranmer, S. R., van Ballegooijen, A. A. & Edgar, R. J. Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520–551 (2007).
Google Scholar
Fisk, L. A. Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. Space Phys. 108, 1157 (2003).
Google Scholar
Higginson, A. K., Antiochos, S. K., DeVore, C. R., Wyper, P. F. & Zurbuchen, T. H. Formation of heliospheric arcs of slow solar wind. Astrophys. J. Lett. 840, L10 (2017).
Google Scholar
Viall, N. M. & Borovsky, J. E. Nine outstanding questions of solar wind physics. J. Geophys. Res. Space Phys. 125, e26005 (2020).
Google Scholar
Seaton, D. B. et al. The Sun’s dynamic extended corona observed in extreme ultraviolet. Nat. Astron. 5, 1029–1035 (2021).
Google Scholar
Darnel, J. M. et al. The GOES-R Solar UltraViolet Imager. Space Weather, 20, e2022SW003044. https://doi.org/10.1029/2022SW003044 (2022).
Brueckner, G. E. et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995).
Google Scholar
Sheeley, N. R. Jr. et al. Measurements of flow speeds in the corona between 2 and 30 R☉. Astrophys. J. 484, 472–478 (1997).
Google Scholar
Wang, Y.-M. et al. Origin of streamer material in the outer corona. Astrophys. J. Lett. 498, L165–L168 (1998).
Google Scholar
Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The Solar Dynamics Observatory (SDO). Sol. Phys. 275, 3–15 (2012).
Google Scholar
Downs, C. et al. Probing the solar magnetic field with a Sun-grazing comet. Science 340, 1196–1199 (2013).
Google Scholar
Mikić, Z. et al. Predicting the corona for the 21 August 2017 total solar eclipse. Nat. Astron. 2, 913–921 (2018).
Google Scholar
Titov, V. S. Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophys. J. 660, 863–873 (2007).
Google Scholar
Titov, V. S., Mikić, Z., Linker, J. A., Lionello, R. & Antiochos, S. K. Magnetic topology of coronal hole linkages. Astrophys. J. 731, 111 (2011).
Google Scholar
Higginson, A. K. & Lynch, B. J. Structured slow solar wind variability: streamer-blob flux ropes and torsional Alfvén waves. Astrophys. J. 859, 6 (2018).
Google Scholar
Lynch, B. J. A model for coronal inflows and in/out pairs. Astrophys. J. 905, 139 (2020).
Google Scholar
Sheeley, N. R. Jr., Lee, D. D.-H., Casto, K. P., Wang, Y.-M. & Rich, N. B. The structure of streamer blobs. Astrophys. J. 694, 1471–1480 (2009).
Google Scholar
Sanchez-Diaz, E. et al. Observational evidence for the associated formation of blobs and raining inflows in the solar corona. Astrophys. J. Lett. 835, L7 (2017).
Google Scholar
Howard, R. A. et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67–115 (2008).
Google Scholar
Eyles, C. J. et al. The heliospheric imagers onboard the STEREO Mission. Sol. Phys. 254, 387–445 (2009).
Google Scholar
Squire, J., Chandran, B. D. G. & Meyrand, R. In-situ switchback formation in the expanding solar wind. Astrophys. J. Lett. 891, L2 (2020).
Google Scholar
Drake, J. F. et al. Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona. Astron. Astrophys. 650, A2 (2021).
Google Scholar
Chitta, L. P. et al. Solar coronal loops associated with small-scale mixed polarity surface magnetic fields. Astrophys. J. Suppl. 229, 4 (2017).
Google Scholar
Wang, Y.-M. Small-scale flux emergence, coronal hole heating, and flux-tube expansion: a hybrid solar wind model. Astrophys. J. 904, 199 (2020).
Google Scholar
Bale, S. D. et al. A solar source of Alfvénic magnetic field switchbacks: in situ remnants of magnetic funnels on supergranulation scales. Astrophys. J. 923, 174 (2021).
Google Scholar
Telloni, D. et al. Observation of a magnetic switchback in the solar corona. Astrophys. J. Lett. 936, L25 (2022).
Google Scholar
DeForest, C. E. et al. Polarimeter to Unify the Corona and Heliosphere (PUNCH): imaging the corona and solar wind as a single system. AGU Fall Meeting 2019 SH43B-06 (AGU, 2019).
Golub, L. et al. EUV imaging and spectroscopy for improved space weather forecasting. J. Space Weather Space Clim. 10, 37 (2020).
Google Scholar
Mason, J. P. et al. SunCET: the Sun Coronal Ejection Tracker concept. J. Space Weather Space Clim. 11, 20 (2021).
Google Scholar
Lamy, P. L. et al. ASPIICS: a giant, white light and emission line coronagraph for the ESA PROBA-3 formation flight mission. Soc. Photo-Opt. Instrum. Eng. Conf. Ser. 10565, 105650T (2017).
Fox, N. J. et al. The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7–48 (2016).
Google Scholar
Antonucci, E. et al. Metis: the Solar Orbiter visible light and ultraviolet coronal imager. Astron. Astrophys. 642, A10 (2020).
Google Scholar
Rochus, P. et al. The Solar Orbiter EUI instrument: the extreme ultraviolet imager. Astron. Astrophys. 642, A8 (2020).
Google Scholar
Tadikonda, S. K. et al. Coronal imaging with the Solar UltraViolet Imager. Sol. Phys. 294, 28 (2019).
Google Scholar
Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012).
Google Scholar
Scherrer, P. H. et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 207–227 (2012).
Google Scholar
Hamada, A., Asikainen, T. & Mursula, K. New homogeneous dataset of solar EUV synoptic maps from SOHO/EIT and SDO/AIA. Sol. Phys. 295, 2 (2020).
Google Scholar
Schrijver, C. J. & De Rosa, M. L. Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165–200 (2003).
Google Scholar
Sun, X., Liu, Y., Hoeksema, J. T., Hayashi, K. & Zhao, X. A new method for polar field interpolation. Sol. Phys. 270, 9–22 (2011).
Google Scholar
Kaiser, M. L. et al. The STEREO mission: an introduction. Space Sci. Rev. 136, 5–16 (2008).
Google Scholar
DeForest, C. E., Matthaeus, W. H., Viall, N. M. & Cranmer, S. R. Fading coronal structure and the onset of turbulence in the young solar wind. Astrophys. J. 828, 66 (2016).
Google Scholar
Lionello, R., Linker, J. A. & Mikić, Z. Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J. 690, 902–912 (2009).
Google Scholar
Lionello, R. et al. Validating a time-dependent turbulence-driven model of the solar wind. Astrophys. J. 784, 120 (2014).
Google Scholar
Downs, C., Lionello, R., Mikić, Z., Linker, J. A. & Velli, M. Closed-field coronal heating driven by wave turbulence. Astrophys. J. 832, 180 (2016).
Google Scholar
Boe, B., Habbal, S., Downs, C. & Druckmüller, M. The color and brightness of the F-corona inferred from the 2019 July 2 total solar eclipse. Astrophys. J. 912, 44 (2021).
Google Scholar
Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI – an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149–173 (1997).
Google Scholar
Del Zanna, G., Dere, K. P., Young, P. R., Landi, E. & Mason, H. E. CHIANTI – an atomic database for emission lines. Version 8. Astron. Astrophys. 582, A56 (2015).
Google Scholar
Linker, J. A. et al. Coronal hole detection and open magnetic flux. Astrophys. J. 918, 21 (2021).
Google Scholar
Howard, T. A. & Tappin, S. J. Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci. Rev. 147, 31–54 (2009).
Google Scholar
GOES-R series level 1b Solar Ultraviolet Imager (SUVI) product in FITS format. National Centers for Environmental Information, National Oceanic and Atmospheric Administration. https://doi.org/10.7289/V5FT8J93 (2021).
Chitta, L. P., Seaton, D. B., Downs, C., DeForest, C. E. & Higginson, A. K. Supporting Materials. Edmond. https://doi.org/10.17617/3.86 (2022).
Recent Comments