Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).
Google Scholar
Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
Google Scholar
Masson-Delmotte, V. et al. Information from paleoclimate archives. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. et al.) (Cambridge University Press, 2013).
Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).
Google Scholar
Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).
Google Scholar
Mantua, N. J. & Hare, S. R. The Pacific decadal oscillation. J. Oceanogr. 58, 35–44 (2002).
Hurrell, J. W., Kushnir, Y., Ottersen, G. & Visbeck, M. An overview of the North Atlantic oscillation. Geophys. Monogr. 134, 1–36 (2003).
Google Scholar
Wang, J. et al. Internal and external forcing of multi-decadal Atlantic climate variability over the past 1200 years. Nat. Geosci. 10, 512–517 (2017).
Google Scholar
Timmermann, A. et al. El Niño–southern oscillation complexity. Nature 559, 535–545 (2018).
Google Scholar
Wanner, H. et al. Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 27, 1791–1828 (2008).
Google Scholar
Turner, T. E. et al. Solar cycles or random processes? Evaluating solar variability in Holocene climate records. Sci. Rep. 6, 23961 (2016).
Google Scholar
Usoskin, I. G. A history of solar activity over millennia. Living Rev. Sol. Phys. 14, 1–97 (2017).
Google Scholar
Schwabe, H. Sonnen-Beobachtungen im Jahre 1843. Astron. Nachr. 21, 234–235 (1844).
Google Scholar
Hale, G. E., Ellerman, F., Nicholson, S. B. & Joy, A. H. The magnetic polarity of sun-spots. Astrophys. J. 49, 153–178 (1919).
Google Scholar
Gleissberg, W. A long-periodic fluctuation of the sun-spot numbers. Observatory 62, 158–159 (1939).
Google Scholar
Suess, H. E. The radiocarbon record in tree rings of the last 8000 years. Radiocarbon 22, 200–209 (1980).
Google Scholar
Eddy, J. A. The maunder minimum. Science 192, 1189–1202 (1976).
Google Scholar
Vasiliev, S. S. & Dergachev, V. A. The ~2400-year cycle in atmospheric radiocarbon concentration: bispectrum of 14C data over the last 8000 years. Ann. Geophys. 20, 115–120 (2002).
Google Scholar
Steinhilber, F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. U.S.A. 109, 5967 (2012).
Google Scholar
Wang, Y. et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic Climate. Science 308, 854–857 (2005).
Google Scholar
Sagawa, T. et al. Solar forcing of centennial-scale East Asian winter monsoon variability in the mid-to late Holocene. Earth Planet. Sci. Lett. 395, 124–135 (2014).
Google Scholar
Xu, D. et al. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record. Sci. Rep. 4, 3611 (2014).
Google Scholar
Park, J. Solar and tropical ocean forcing of late-Holocene climate change in coastal East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 469, 74–83 (2017).
Bae, S. W., Lee, K. E. & Chang, T. S. Two long and pronounced cold periods 3000–5000 and 6600–8400 years B.P. in East Asia and the southward migration of the westerly jet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 537, 109402 (2020).
Schiemann, R., Lüthi, D. & Schär, C. Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Clim. 22, 2940–2957 (2009).
Google Scholar
Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).
Google Scholar
Ha, K.-J., Heo, K.-Y., Lee, S.-S., Yun, K.-S. & Jhun, J.-G. Variability in the East Asian Monsoon: A review. Meteorol. Appl. 19, 200–215 (2012).
Google Scholar
Yeh, S.-W. & Kim, C.-H. Recent warming in the Yellow/East China Sea during winter and the associated atmospheric circulation. Cont. Shelf Res. 30, 1428–1434 (2010).
Google Scholar
Sim, J.-E., Shin, H.-R. & Hirose, N. Comparative analysis of surface heat fluxes in the East Asian marginal seas and its acquired combination data. J. Korean Earth. Soc. 39, 1–22 (2018).
Google Scholar
Chan, D., Zhang, Y., Wu, Q. & Dai, X. Quantifying the dynamics of the interannual variabilities of the wintertime East Asian Jet Core. Clim. Dyn. 54, 2447–2463 (2020).
Chang, T. S. & Ha, H. J. The Heuksan mud belt on the tide-dominated shelf of Korea: a supply driven depositional system?. Geo-Mar. Lett. 35, 447–460 (2015).
Google Scholar
Blaauw, M. & Christen, J. W. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).
Google Scholar
Park, S. C. et al. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Mar. Geol. 170, 271–288 (2000).
Google Scholar
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F. & van Loon, H. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325, 1114–1118 (2009).
Google Scholar
Khider, D., Jackson, C. S. & Stott, L. D. Assessing millennial-scale variability during the Holocene: A perspective from the western tropical Pacific. Paleoceanography 29, 143–159 (2014).
Google Scholar
Shindell, D., Rind, D., Balachandran, N., Lean, J. & Lonergan, P. Solar cycle variability, ozone, and climate. Science 284, 305–308 (1999).
Google Scholar
Gleisner, H. & Thejll, P. Patterns of tropospheric response to solar variability. Geophys. Res. Lett. 30, 1711 (2003).
Google Scholar
Haigh, J. D., Blackburn, M. & Day, R. The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Clim. 18, 3672–3685 (2005).
Google Scholar
Haigh, J. D. The impact of solar variability on climate. Science 272, 981–984 (1996).
Google Scholar
Pak, G. Correlation between the Pacific Decadal Oscillation and East/Japan sea SST in the autumn. J. Korean Soc. Oceanogr. 24, 509–518 (2019).
An, Z. et al. Interplay between the westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep. 2, 619 (2012).
Google Scholar
Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).
Google Scholar
Nagashima, K., Tada, R. & Toyoda, S. Westerly jet-East Asian summer monsoon connection during the Holocene. Geochem. Geophys. Geosystems 14, 5041–5053 (2013).
Google Scholar
Prahl, F. G. & Wakeham, S. G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367–369 (1987).
Google Scholar
Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303–2310 (1988).
Google Scholar
Heaton et al. Marine20-the marine radiocarbon age calibration curve (0-55,000 CAL BP). Radiocarbon 62, 779–820 (2020).
Reimer, P. J. & Reimer, R. W. A marine reservoir correction database and on-line interface. Radiocarbon 43, 461–463 (2001).
Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comp. Geosci. 28, 421–426 (2002).
Ólafsdóttir, K. B., Schulz, M. & Mudelsee, M. REDFIT-X: Cross-spectral analysis of unevenly spaced paleoclimate time series. Comp. Geosci. 91, 11–18 (2016).
Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).
Google Scholar
Recent Comments